Johan Karlstrand ABB AB – High Voltage Cables

WETS-07 Reactive Compensation

- What is reactive power?
- Uncompensated cable links critical length
- Tuned compensation perfect balance
- The Icelandic story an example from a pre-study done by ABB
- Some conclusions

What, in fact, is reactive power....

- Basic truths:
 - 1. No macroscopic change in energy can be instantanous
 - 2. Electrical power can only be transmitted with interacting electric and magnetic fields (EM-fields)
 - 3. Electrical <u>active</u> power is created with voltage (electrical field) and current (magneteic field) in phase with each other
- If U and I not in phase, we introduce:
 - 1. Inductance (L) \rightarrow a constant related to magnetic energy
 - 2. Capacitance (C) \rightarrow a constant related to electrical energy

- The reactive power is a mathematical (engineering) way to take into account the time lags between voltage and current in a transmission system!
 - If U and I in phase:
 Active Power
 - If U and I not in phase:
 Reactive Power

... and which are the consequences for the network, using cables?

- Voltage support during high load conditions
- Too high voltage during low load conditions
- Normally lower losses but for long uncompensated links, higher losses
- Higher short circuit power in the network
- May improve transient stability
- May prevent voltage collapse

- What is reactive power?
- Uncompensated cable links critical length
- Tuned compensation perfect balance
- The Icelandic story an example from a pre-study done by ABB
- Some conclusions

Uncompensated Cable Links – Critical lengths (1)

Typically, the capacitance increases with the rating, i.e. the larger conductor cross-section the higher capacitance (C'):

132 kV: 0,13 to 0,34 μF

220 kV: 0,13 to 0,27 μF

400 kV: 0,13 to 0,23 μF

 $L \approx \frac{P_{tot}}{n\omega \cdot C'U_o^2}$ (Simplified formula)

ABB

U [kV]	132 kV	220 kV	400 kV
Q [MVAr/km, and phase]	0,2 - 0,7	0,7 – 1,4	2,2 - 4,2

U [kV]	132 kV	220 kV	400 kV
Critical length [km]	130-150	120-140	60-90

There may be either technical or economical reasons for compensation with 10-20% reduction in current or 40-60% of L_c!

- What is reactive power?
- Uncompensated cable links critical length
- Tuned compensation perfect balance
- The Icelandic story an example from a pre-study done by ABB
- Some conclusions

Indicates normal range of critical length

Indicates possible approximate border between AC and DC

Cost example for fixed inductive compensation 220 kV/400 MW

Needed power consumption for 120 km: 2x180=360 MVAr

Cost for the cable for 60 km (0,5 L_c):
1 curr/MVA

Cost for fixed shunt compensation: 0,15 curr/MVAr

■ 10% (=40 MW) decrease in rating: 40 curr

■ ⇒ Available MVAr's is 40/0,15=<u>267 MVAr < 360 MVAr</u>

20% (=80 MW) decrease in rating:
80 curr

Available MVAr's is 80/0,15=533 MVAr > 360 MVAr

Conclusion: It may be economical justified with fixed inductive shunt compensation when the derating is between 10-20%.

Typical voltage and current profiles for a tuned system

Current profile

Voltage profile

- What is reactive power?
- Uncompensated cable links critical length
- Tuned compensation perfect balance
- The Icelandic story an example from a pre-study done by ABB
- Some conclusions

The Icelandic story – (not a realized project)

Ref. - Cigre' Paper 21-201, 2002

- Severe weather conditions implied a lot of faults on the OH-line ring.
- This implied problems with transient stability in the system.
- Solution: A purpose-built 200 km long XLPE cable crossing the island.

The solution...

1x300, AI

Ins. thickness: 12 mm

Cu-wires/Al-laminate

HDPE-sheath

The cable links is preventing post fault voltage collapse and improves transient stability for the whole network!

- What is reactive power?
- Uncompensated cable links critical length
- Tuned compensation perfect balance
- The Icelandic story an example from a pre-study done by ABB
- Some conclusions

Optimum reactive power control - Conclusion

- Degree of compensation changes with the characteristics of the network and the reactive power loads
- If the cable link is operating "far from" the loads (inductive machines etc), the higher degree of compensation you need. Remote syncrounuous generators has a cos(φ) close to 1.
- In EHV networks it may be sufficient with fixed compensation with a high degree of compensation. For long lengths, a huge amount of reactive power is needed, though.
- In HV networks (which are closer to the loads) a lower degree of compensation may be needed.
 Additionally, SVC-Classic or SVC-Light control may be needed.
- Voltage limitations (5-10%) are mainly present in HV networks below (100 kV/50-100 km) for tuned systems. For higher voltages/lengths, the charging current, losses etc set the limitations.
- 40-60 % of the critical length (10-20% decrease in rating)— take a look if inductive shunt compensation may be cost efficient!
- There is no extra "MW-loss" for HVDC-Light systems. It is always interesting to look at the extra advantages, which are offered with DC-control as well as the other known benefits from extruded cable systems in general.

Thank You!

